原创

Spark 源码分析(五): Executor 启动

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://zhulei.blog.csdn.net/article/details/94461199

上一篇已经将 Application 注册到了 master 上了,在 master 收到注册消息后会进行一系列操作,最后调用 schedule 方法。

这个 schedule 方法会去做两件事,一件事是给等待调度的 driver 分配资源,另一件事是给等待调度的 application 去分配资源启动 Executor。

给 application 分配资源启动 Executor 的代码最终会调用一个方法:launchExecutor(是 Master 中的代码)。

在 lauchExecutor 方法中会先向 worker 发送 lauchExecutor 消息,然后会向 driver 发送 executor 已经启动的消息。

private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc): Unit = {
    logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
    worker.addExecutor(exec)
    // 向 worker 发送 LaunchExecutor 消息
    worker.endpoint.send(LaunchExecutor(masterUrl,
      exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory))
     // 向 driver 发送 ExecutorAdded 的消息
    exec.application.driver.send(
      ExecutorAdded(exec.id, worker.id, worker.hostPort, exec.cores, exec.memory))
  }

下面看 worker 端收到 launchExecutor 消息后是怎么处理的。

同样的在 receive 的模式匹配中找到该消息的匹配,可以看到做了这些事情:

1,先判断发消息的 master 是否是 alive 状态,如果是才会继续执行;

2,创建 executor 的工作目录和本地临时目录;

3,将 master 发来的消息封装为 ExecutorRunner 对象,然后调用其 start 方法启动线程;

4,向 master 发送消息,告诉当前 executor 的状态;

// 模式匹配,是 LaunchExecutor 消息
case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
  		// 如果发送消息的 master 不是 active 的则不执行    
  		if (masterUrl != activeMasterUrl) {
        logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
      } else {
        try {
          logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))

          // 创建 executor 的工作目录
          val executorDir = new File(workDir, appId + "/" + execId)
          if (!executorDir.mkdirs()) {
            throw new IOException("Failed to create directory " + executorDir)
          }

          // 通过 SPARK_EXECUTOR_DIRS 环境变量配置创建 Executor 的本地目录
          // Worker 会在当前 application 执行结束后删除这个目录
          val appLocalDirs = appDirectories.getOrElse(appId,
            Utils.getOrCreateLocalRootDirs(conf).map { dir =>
              val appDir = Utils.createDirectory(dir, namePrefix = "executor")
              Utils.chmod700(appDir)
              appDir.getAbsolutePath()
            }.toSeq)
          appDirectories(appId) = appLocalDirs
          // 将接收到的 application 中 Executor 的相关信息封装为一个 ExecutorRunner 对象
          val manager = new ExecutorRunner(
            appId,
            execId,
            appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),
            cores_,
            memory_,
            self,
            workerId,
            host,
            webUi.boundPort,
            publicAddress,
            sparkHome,
            executorDir,
            workerUri,
            conf,
            appLocalDirs, ExecutorState.RUNNING)
          executors(appId + "/" + execId) = manager
          // 启动这个线程
          manager.start()
          // 更新 worker 的资源利用情况
          coresUsed += cores_
          memoryUsed += memory_
          // 给 master 回复消息
          sendToMaster(ExecutorStateChanged(appId, execId, manager.state, None, None))
        } catch {
          case e: Exception =>
            logError(s"Failed to launch executor $appId/$execId for ${appDesc.name}.", e)
            if (executors.contains(appId + "/" + execId)) {
              executors(appId + "/" + execId).kill()
              executors -= appId + "/" + execId
            }
            sendToMaster(ExecutorStateChanged(appId, execId, ExecutorState.FAILED,
              Some(e.toString), None))
        }
      }

这里主要看 ExecutorRunner 调用 start 之后做了什么。

实际上是创建了一个线程,线程运行时会去执行 fetchAndRunExecutor 这个方法。

private[worker] def start() {
  	// 创建线程
    workerThread = new Thread("ExecutorRunner for " + fullId) {
      override def run() { fetchAndRunExecutor() }
    }
  	// 启动线程
    workerThread.start()
    // Shutdown hook that kills actors on shutdown.
    shutdownHook = ShutdownHookManager.addShutdownHook { () =>
      // It's possible that we arrive here before calling `fetchAndRunExecutor`, then `state` will
      // be `ExecutorState.RUNNING`. In this case, we should set `state` to `FAILED`.
      if (state == ExecutorState.RUNNING) {
        state = ExecutorState.FAILED
      }
      killProcess(Some("Worker shutting down")) }
  }

fetchAndRunExecutor 这个方法将接收到的信息做如下一些事情:

1,创建 ProcessBuilder,准备执行本地命令;

2,为 ProcessBuilder 创建执行目录,设置环境变量;

3,启动 ProcessBuilder,生成 Executor 进程,这个进程的名称一般为:CoarseGrainedExecutorBackend;

4,重定向输出流和错误文件流;

5,等待获取 executor 的退出码,然后发送给 worker;

private def fetchAndRunExecutor() {
    try {
      // 创建 ProcessBuilder
      val builder = CommandUtils.buildProcessBuilder(appDesc.command, new SecurityManager(conf),
        memory, sparkHome.getAbsolutePath, substituteVariables)
      // 封装指令
      val command = builder.command()
      val formattedCommand = command.asScala.mkString("\"", "\" \"", "\"")
      logInfo(s"Launch command: $formattedCommand")

      builder.directory(executorDir)
      builder.environment.put("SPARK_EXECUTOR_DIRS", appLocalDirs.mkString(File.pathSeparator))
      // In case we are running this from within the Spark Shell, avoid creating a "scala"
      // parent process for the executor command
      builder.environment.put("SPARK_LAUNCH_WITH_SCALA", "0")

      // Add webUI log urls
      val baseUrl =
        if (conf.getBoolean("spark.ui.reverseProxy", false)) {
          s"/proxy/$workerId/logPage/?appId=$appId&executorId=$execId&logType="
        } else {
          s"http://$publicAddress:$webUiPort/logPage/?appId=$appId&executorId=$execId&logType="
        }
      builder.environment.put("SPARK_LOG_URL_STDERR", s"${baseUrl}stderr")
      builder.environment.put("SPARK_LOG_URL_STDOUT", s"${baseUrl}stdout")

      // 启动进程
      process = builder.start()
      val header = "Spark Executor Command: %s\n%s\n\n".format(
        formattedCommand, "=" * 40)

      // 重定向标准输出流
      // Redirect its stdout and stderr to files
      val stdout = new File(executorDir, "stdout")
      stdoutAppender = FileAppender(process.getInputStream, stdout, conf)

      // 重定向错误输出流
      val stderr = new File(executorDir, "stderr")
      Files.write(header, stderr, StandardCharsets.UTF_8)
      stderrAppender = FileAppender(process.getErrorStream, stderr, conf)

      // Wait for it to exit; executor may exit with code 0 (when driver instructs it to shutdown)
      // or with nonzero exit code
      // 等待退出码
      val exitCode = process.waitFor()
      state = ExecutorState.EXITED
      val message = "Command exited with code " + exitCode
      // 将退出码发送给 worker
      worker.send(ExecutorStateChanged(appId, execId, state, Some(message), Some(exitCode)))
    } catch {
      case interrupted: InterruptedException =>
        logInfo("Runner thread for executor " + fullId + " interrupted")
        state = ExecutorState.KILLED
        killProcess(None)
      case e: Exception =>
        logError("Error running executor", e)
        state = ExecutorState.FAILED
        killProcess(Some(e.toString))
    }
  }

至此,Executor 是启动完成了。

文章最后发布于: 2019-07-02 17:39:21
展开阅读全文
0 个人打赏
私信求帮助

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览